

Session 3 | Subtypes, Gender, and Ethnicity: Do They Impact HIV Care

HIV Subtypes - Virologic and Resistance Implications

Opass Putcharoen, **MD**

Chulalongkorn University Bangkok Thailand

Asia-Pacific HIV Clinical Forum 2020: Optimizing Treatment

Enduring materials available at www.AcademicMedicalEducation.com

HIV Subtypes - Virologic and Resistance Implications

OPASS PUTCHAROEN M.D. M.Sc.

Thai Red Cross Emerging Infectious Diseases Clinical Center Department of Medicine, Faculty of Medicine, Chulalongkorn University Bangkok, Thailand

Disclosures

Opass Putcharoen, MD.

- Consulting fees from BMS
- Non-CME/CE services from Gilead Sciences, BMS, Merck, and Mylan Healthcare Siam Pharmaceutical and Mylan

Estimated timeline of global evolution and spread of HIV types, groups, and subtypes

M-B western Europe late 1970s/1980s Thailand ~1980s

Efficacy of Once-daily Regimens based on controlled trials (48 weeks results, NS=F)

Permpalung N, Putcharoen O, Avihingsanon A, Ruxrungtham K. Expert Opin. Pharmacother. (2012) Early Online:1-17

Virological outcomes with specific antiretroviral drugs across different HIV-1 subtype

ART	Study	Subtype	Response
RPV	ECHO, THRIVE	30% non-B subtypes11% subtype C	84 % subtype B86% non-B subtypes
LPV	ARTEMIS	42% non-B subtypes14% subtype C	78% subtype B78-82% non-B subtypes
DRV	ARTEMIS	39% non-B subtypes11% subtype C	84% subtype B87-88% non-B subtypes
RAL	STARTMARK	19% non-B subtypes7% subtype C	89% subtype B95% non-B subtypes

Adapted from Curr Opin Virol 2012;2(5): 636-643

Dichotomous Pathways in the Evolution of TAMs

Novitsky V, et al. AIDS Res Hum Retroviruses. 2007; 23:868-78. Clavel F and Hance AJ. HIV Drug Resistanc. N Engl J Med 2004; 350:1023-35.

Resistance profiles in NNRTI-based failure

Higher VL (>4 log) was associated with more TAMs, MDR and K65R

Sungkanuparph S, et al. Clin Infect Dis. 2007 Feb1;44(3):447-52. Drug resistance mutation

Development of K65R in subtype C

A Template-Dependent Dislocation Mechanism Potentiates K65R Reverse Transcriptase Mutation Development in Subtype C Variants of HIV-1

High rate of K65R for ART naïve patients with subtype C HIV infection failing a TDF-containing first-line regimen in South Africa

 Very high rates (>65%) of K65R for patients failing TDF-based first-line regimens at McCord hospital with few additional NRTI mutations compared to subtype B. These rates may reflect faster in vivo selection, longer time on a failing regimen, or transmitted DR.

AIDS. 2012 August 24; 26(13): 1679–1684.

No Evidence That HIV-1 Subtype C Infection Compromises the Efficacy of Tenofovir-Containing Regimens: Cohort Study in the United Kingdom

Ellen White,¹ Erasmus Smit,⁶ Duncan Churchill,⁷ Simon Collins,⁴ Clare Booth,⁵ Anna Tostevin,¹ Caroline Sabin,² Deenan Pillay,^{3,8} and David T. Dunn¹; on behalf of the UK HIV Drug Resistance Database and UK Collaborative HIV Cohort Study

¹MRC Clinical Trials Unit at UCL, ²Department of Infection and Population Health, ³Division of Infection and Immunity, University College London, ⁴HIV i-Base, ⁵Health Service Laboratories, Royal Free Hospital, London, ⁶Public Health England, Birmingham Heartlands Hospital, and ⁷Brighton and Sussex Hospitals NHS Trust, United Kingdom; and ⁸Africa Centre for Population Health, University of KwaZulu-Natal, Durban, South Africa

J Infect Dis. 2016 Nov 1; 214(9): 1302–1308.

Drug resistance mutations between HIV-1 subtypes and CRFs and impact on antiretroviral drug resistance and susceptibility

Enzyme	Position	Findings	Reference(s)
RT	K65R	Subtype C – AAG (K); subtype B – AAA (K): preferential pausing of reverse transcription, related to homopolymeric stretch of adenine bases	Antiviral Chemistry and Chemotherapy. 2010; 20:117–131.
	E138K	E138K the first mutation to emerge in subtype C during ETR therapy	Antimicrobial Agents and Chemotherapy. 2011; 55:600– 607
	Y181C	Preferential selection of Y181C for subtype A and B during etravirine therapy	Antimicrobial Agents and Chemotherapy. 2010; 54:4812– 4824
	N348I	Reduces susceptibility to etravirine in subtypes A, B and C. High prevalence in subtype C samples from patients failing first-generation NNRTIS	Antimicrobial Agents and Chemotherapy. 2011; 55:1806– 1809.
PR	G17E	CRF2_AG hypersusceptibility to nelfinavir, atazanavir and indinavir	Antimicrobial Agents and Chemotherapy. 2012; 56:2719–2725
	M36I	Subtype C – ATA (I); subtype B – ATG (M): affects susceptibility to protease inhibitors and viral replication capacity	Antimicrobial Agents and Chemotherapy. 2010; 54:2878– 2885
	I64M	CRF2_AG hypersusceptibility to nelfinavir, atazanavir and indinavir	Antimicrobial Agents and Chemotherapy. 2012; 56:2719–2725
	M89T	Subtype C – ATG (M); subtype B – CTG (L): leads to preferential emergence of M89T in subtype C	Journal of Antimicrobial Chemotherapy. 2012; 67:988– 994.

Drug resistance mutations between HIV-1 subtypes and CRFs and impact on antiretroviral drug resistance and susceptibility

Enzyme	Position	Findings	Reference(s)
IN	E92Q	E92Q/N155H double mutant 10-fold more resistant to raltegravir and elvitegravir in subtype B versus subtype C	AIDS. 2010; 24:2171–2179
	L101I	Present more frequently in non-B subtypes compared to subtype B (both INI-naïve and RAL-experienced)	Antiviral Research. 2011; 90:164–167.
	G118R	Most common resistance pathway during dolutegravir therapy in subtype C	Journal of Virology. 2010; 84:9210–9216
	T124A	Present more frequently in INI-naïve non-B subtypes compared to subtype B	Antiviral Research. 2011; 90:164–167.
	N155H	Subtype B with this mutation more resistant to raltegravir (and elvitegravir) than subtype C	AIDS. 2010; 24:2171–2179.
	R263K	Most common resistance pathway during dolutegravir therapy in subtype B	Journal of Virology. 2012; 86:2696–2705.

Impact of genotypic diversity on selection of subtype-specific drug profiles during RAL-based therapy in individuals infected with B and BF recombinant HIV-1 strains

[🔳] IN subtype B 🛛 🖾 IN subtype F

Resistance pathway during DTG therapy

Isolation of R263K mutant viruses with DTG in subtype B

Serial passage experiments with CBMCs infected with subtype B, A/G, and C HIV-1 viruses in the presence of increasing concentrations of DTG

J Virol. 2012 Mar;86(5):2696-705.

INSTI for treatmentnaïve patients

			Resistance	Emergent	Emergent
INSTI	Clinical	Treatment Group	Analysis	INSTI	Other
	Trial		Population;	n (%)	Resistance;
RAL -	STARTMRK	RAL (BID) + FTC/TDF	9 (3.2%)	4 (1.4%)	3 (1.1%)
		EFV + FTC/TDF	7 (2.5%)	na	3 (1.1%)
		RAL (QD) + FTC/TDF	30(7.9%)	9 (2.4%)	20 (5.2%)
	QDMRK	RAL (BID) + FTC/TDF	16 (4.1%)	2 (0.5%)	6 (1.5%)
EVG	GS-US-236-	EVG/COBI/FTC/TDF	14 (4.0%)	7 (2.0%)	8 (2.3%)
	0102	EFV/FTC/TDF	17 (4.8%)	na	8 (2.3%)
	GS-US-236- 0103	EVG/COBI/FTC/TDF	12 (3.4%)	4 (1.1%)	4 (1.1%)
		ATV + RTV + FTC/TDF	8 (2.3%)	0	0
DTG _	SPRING-2	DTG + [FTC/TDF or ABC/3TC]	20 (4.9%)	0	0
		RAL + [FTC/TDF or ABC/3TC]	28 (6.8%)	1 (0.2%)	4 (1.0%)
	SINGLE	DTG + ABC/3TC	18 (4.3%)	0	0
		EFV/FTC/TDF	17 (4.1%)	na	4 (1.0%)
	FLAMINGO	DTG + [FTC/TDF or ABC/3TC]	2 (0.8%)	0	0
		DRV + RTV + [FTC/TDF or ABC/3TC]	2 (0.8%)	0	0

Viruses 2014, 6, 2858-2879

Resistance to DTG in treatment-naïve patients

Clinical Infectious Diseases

BRIEF REPORT

Clinical Infectious Diseases® 2018;67(5):791-4

Emergence of Integrase Resistance Mutations During Initial Therapy Containing Dolutegravir

Patient's profile:

OI: PCP VL= 1 970 000 copies/mL CD4=78/µL (12%) **Backbone: TDF/FTC**

Genotype Frequencies (%) at Each Time Point

Genotype [®]	Time Point A	Time Point B	Time Point C
Wild type	98.9	58.3	76.3
Q148K	0.0	0.0	20.9
I151V-G163E	0.0	34.5	1.2
Silent mutations	0.3	0.9	0.2
I151V	0.0	2.7	0.2
G163E	0.0	1.9	0.1

"Genotypes present at any time point at frequency >0.5%

Time point A Time point B

Resistance to DTG in treatment-naïve patients

H+RFB+E+Z H+RFB+E H+RFB **TB** Therapy Failure of Dolutegravir First-Line ART with Selection of Virus FTC+TDF+DTG FTC+TDF+RPV+DRV/r ART Carrying R263K and G118R IRIS -500 107-M184V M184I/V G118R, R263K R263K 106-CD4 Cell Count (cells/mm³) 400 Viral Load (copies/ml) 105-R263K and G118R Viral -300 CD4 cell load 104count 103--200 **Patient's profile:** 10²-LOD **OI: TB on rifampicin with IRIS** 100 10¹-VL= 1 400 000 copies/mL 100 -0 **HIV-1** subtype F 25 10 15 20 35 50 0 30 40 45 5 Weeks CD4=22/µL (12%) **Backbone: TDF/FTC Resistance Analysis** Wk 0 Wk 11 Wk 36 Mutation Wk 3 Wk 8 Wk 15 Wk 22 Wk 27 Wk 35 % M184V 0.17 0.22 85.8 95.6 98.1 98.6 ND 99.4 99.6 0.09 0.07 13.6 2.9 M184I 0.0 0.0 ND 0.0 0.0 29.7 G118R 0.01 0.00 0.0 4.0 23.0 0.0 0.0 45.2 R263K 0.00 0.00 64.1 82.9 69.8 99.4 99.2 69.2 30.4 N ENGL J MED 381;9 NEJM.ORG AUGUST 29, 2019

Resistance to DTG in treatment-naïve patients

Open Forum Infectious Diseases

BRIEF REPORT

Virological Failure in HIV to Triple Therapy With Dolutegravir-Based Firstline Treatment: Rare but Possible

DTG failure in treatment-naïve patients

- Very rare but possible
- Risk
 - Advanced HIV infection (low CD4 and high HIV RNA)
 - Concurrent OI
 - Use of rifamycin?
 - Non-subtype B HIV-1
- Likely DR mutation in case report:
 INSTI DR: R263K E158Q G118R Q148K I151V G163E
 Backbone (TDF/FTC): M184V

Summary

- The diversity HIV has given rise to multiple subtypes and recombinant strains
- The majority of research into antiretroviral agents and drug resistance has been performed on subtype B viruses, yet non-subtype B strains are responsible for 90% of global infections
- Response to ART in treatment-naïve patients are the same in all subtypes
- There is emerging evidence of subtype differences in drug resistance, relevant to antiretroviral strategies in different parts of the world

Thank you

Cl