Session 5: Distance Learning and Dolutegravir Controversy

Dolutegravir and Weight Gain – Where are We?

François Venter MD, FCP, PhD

University of the Witwatersrand, South Africa

Weight gain and dolutegravir: an update Nov 2020

Francois Venter

Ezintsha, University of the Witwatersrand, Johannesburg

Thanks to Andrew Hill, ADVANCE study team

Disclosures: Francois Venter

Research Support: USAID; Unitaid; South African Medical Research Council; Bill and Melinda Gates Foundation; study drug donations from ViiV Healthcare and Gilead Sciences; study support Merck and ViiV

Speaker's Bureau: Merck, Gilead Sciences, AbbVie, Cipla, Johnson and Johnson, ViiV Healthcare, Mylan and Southern African HIV Clinicians Society

Board Member/Advisory Panel: Gilead Sciences, ViiV Healthcare, Merck, Mylan

BMI: 24.8

How on earth did we get here?

HIV-positive people are leading normal lives – which means they will gain weight if prone

Annals of Internal Medicine

Original Research

Life Expectancy of Persons Receiving Combination Antiretroviral Therapy in Low-Income Countries: A Cohort Analysis From Uganda Edward J. Mills, PhD, MSc, LLM; Celestin Bakanda, MSc; Josephine Birungi, MBChB; Ketth Chan, MSc; Nathan Ford, PhD, MPH; Curris L. Cooper, MD, MSc; Josen B. Nachega, MD, PhD; Mark Dybul, MD; and Robert S. Hogg, PhD, MA

- Uganda/ US/ UK 'higher life expectancy that matched populations
- HIV positive people are going to get old

1. Expect a normal life expectancy: May et al. AIDS 2014

UK CHIC: 21 388 people started ART 2000-2010

	life expectancy			
CD4	Baseline	1 year ART	5 years ART	
<200	71		& VL>50 54	
200-349	78	78		
>350	77	81	& VL<50 80	
General population	78			

Conclusion: If diagnosed, in care and on effective ART: life expectancy is normal

E

Great information to give to people newly diagnosed and encourage good adherence

Thanks: Julie Fox, Guys

10 16 August 2011 Annals of Internal Medicine Volume 155 • Number 4

First reports of weight gain with new regimens...

- Mid-2017
- Case report of someone switching INSTI due to weight gain

Weight gain reported with....

- Most modern drugs but worse with
 - Newer integrase inhibitors (not cabotegravir)
 - Tenofovir alafenamide (TAF)
 - Also rilpivirine
- Weight not reported in dolutegravir or bictegravir registration studies
- In context where >30 million people moving to dolutegravir across the world; and where TAF and bictegravir are extensively used in richer countries

Are new antiretroviral treatments increasing the risks of clinical obesity?

Andrew Hill¹*, Laura Waters² and Anton Pozniak³

¹ Department of Translational Medicine, University of Liverpool, UK ² Central and North West London NHS Trust, Mortimer Market Centre, London, UK ³ Chelsea and Westminster Hospital, London, UK; London School of Hygiene and Tropical Medicine, UK

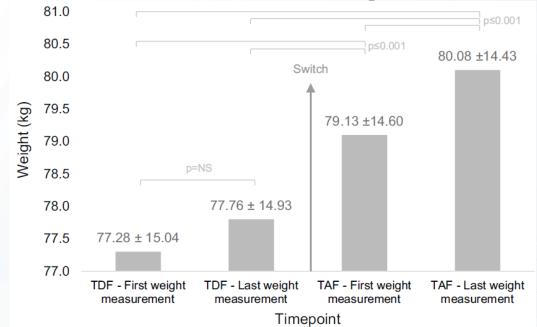
Study [ref]	Design	Results
Raltegravir		
NEAT 001 [12] (naïve, <i>n</i> =126)	DRV/r+RAL DRV/r + TDF/FTC	DEXA sub-study: trunk fat 7.3% higher DRV/r/RAL vs TDF/FTC/RAL at week 96 (P=0.021)
ACTG 5260s [10,11] (naïve, n=126)	TDF/FTC/RAL TDF/FTC/DRV/r TDF/FTC/ATV/r	Higher risk of severe weight gain for RAL vs ATV/r
Dolutegravir		
NEAT 022 [13] (switch, n=415)	NRTIs + DTG NRTIs + PI/r	+1 kg increase in body weight to week 48 (P=0.002)
SPRING-1 [13] (naïve, <i>n</i> =204)	TDF/FTC/EFV TDF/FTC/DTG	Increases in body weight higher in DTG arms
Gilead 1490 [15] (naïve, n=645)	TAF/FTC/DTG TAF/FTC/BIC	+3.9 kg increase in body weight to week 96 +3.5 kg increase in body weight to week 96
MONODO [9] (naïve, n=8)	DTG monotherapy	+4.1 kg increase in body weight to week 24

PI/r: ritonavir-boosted protease inhibitor; RAL: raltegravir; TAF: tenofovir AF; TDF: tenofovir DF.

Use of TDF versus TAF or ABC – effects on body weight

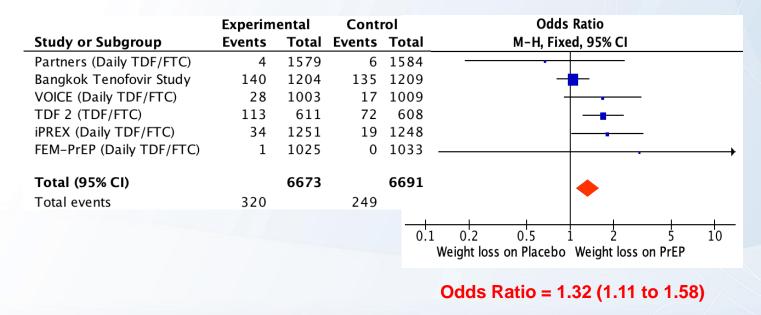
DISCOVER trial (PrEP): +1kg on TAF/FTC, versus +0kg on TDF/FTC

STEAL trial (treatment): +1kg on ABC/3TC versus +0kg on TDF/FTC


AMBER trial (treatment): +1.8kg on TAF/FTC/DRV/c vs +0.8kg on TDF/FTC/DRV/c

Change in body weight after switch from TDF to TAF – German cohort study

■All switched patients (n=129)


Only switch patients are shown, "TDF (TAF)—first/last weight measurement" denotes the first/last weight measured on TDF (TAF) treatment; results shown for weight in kg; NS not statistically significant

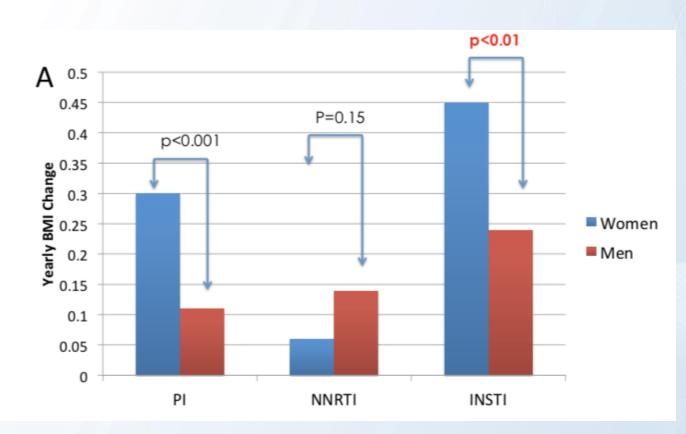
Gomez et al. Weight Gain switching TDF to TAF. Infection 2018

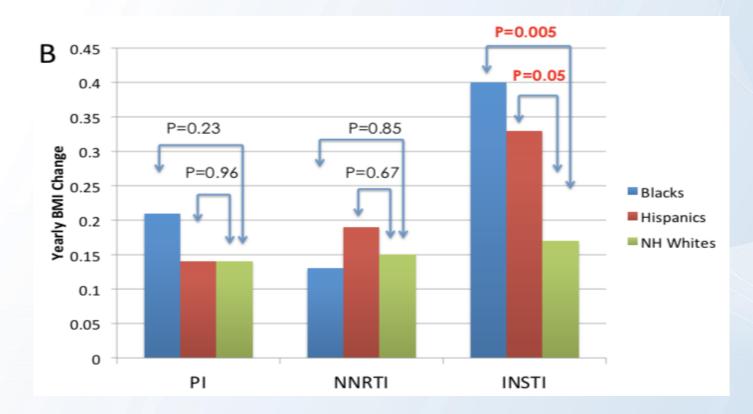
TDF as PrEP: weight loss >5%

P = 0.002

Then came the INSTI's....

- Rapidly became standard of care
- 2 years later, at CROI issue raised in themed discussion


Weight gain themed discussion : CROI 2019 http://www.croiwebcasts.org/s/2019croi/TD-08


Weight gain on INSTI – women gain 2x more than men (US cohort study)

Weight gain on INSTI – black people gain 2x more than whites (US cohort study)

Randomised trials – similar effects of DTG and BIC

Trial	Design	Outcomes		
NEAT 022 NRTIs + (N=415, switch)	DTG +1 NRTIs + PI/r	+1kg rise in body weight to Week 48 (p=0.002) Pl/r		
SPRING-1 TDF/FT N=204, naive	C/EFV ris TDF/FTC/DTG	es in body weight higher in DTG arms		
Gilead 1490 96	TAF/FTC/DTG	+3.9kg rise in body weight to Week		
N=645, naïve 96	TAF/FTC/BIC	+3.5kg rise in body weight to Week		
Gilead 1489 96	ABC/3TC/BIC	+2.4kg rise in body weight to Week		
90 N=645, naïve 96	TAF/FTC/BIC	+3.6kg rise in body weight to Week		
MONODO DTG mo	ono +4.1kg rise in I	body weight to Week 24		

N=8, naïve

virology education

Clinical Infectious Diseases

Weight Gain Following Initiation of Antiretroviral Therapy: Risk Factors in Randomized Comparative Clinical Trials

Paul E. Sax,¹ Kristine M. Erlandson,² Jordan E. Lake,³ Grace A. McComsey,⁴ Chloe Orkin,⁵ Stefan Esser,⁶ Todd T. Brown,⁷ Jürgen K. Rockstroh,⁸ Xuelian Wei,⁹ Christoph C. Carter,^{9,0} Lijie Zhong,⁹ Diana M. Brainard,⁹ Kathleen Melbourne,⁹ Moupali Das,⁹ Hans-Jürgen Stellbrink,¹⁰ Frank A. Post,^{11,0}

C	, , ,		-
Variable	OR	95% CI	p value
CD4 (<200 vs. ≥200/µL)	4.36	3.6, 5. 2 7	<0.001
HIV RNA (>100k vs. ≤100k c/mL)	1.98	1.65, 2.37	<0.001
BMI (normal vs. overweight	1.54	1.27, 1.87	<0.001
BMI (normal vs. obese)	1.66	1.29, 2.15	<0.001
Sex (female vs. male)	1.54	1.21, 1.96	<0.001
Race (black vs. non-black)	1.32	1.1, 1.59	0.003
Third agent (BIC/DTG vs. EFV)	1.82	1.24, 2.66	0.002
Third agent (EVG/c vs. EFV)	1.36	1.04, 1.78	0.026
Third agent (RPV vs. EFV)	1.51	1.03, 2.2	0.035
Third agent (ATV/r vs. EFV)	0.92	0.59, 1.45	0.73
NRTI (TAF vs. AZT)	1.75	1.04, 2.95	0.034
NRTI (TDF vs. AZT)	1.19	0.76, 1.87	0.44
NRTI (ABC vs. AZT)	0.93	0.47, 1.8	0.82
NRTI (TAF vs. ABC)	1.9	1.25, 2.88	0.003
NRTI (TDF vs. ABC)	1.29	0.79, 2.11	0.31
NRTI (TAF vs. TDF)	1.47	1.14, 1.9	0.003

Table 5. Risk factors for significant (≥10%) weight gain in individuals initiating ART.

Weight Gain Following Initiation of Antiretroviral Therapy: Risk Factors in Randomized Comparative Clinical Trials

Third agent (ATV/r vs. EFV)

NRTI (TAF vs. AZT)

NRTI (TDF vs. AZT)

NRTI (ABC vs. AZT)

NRTI (TAF vs. ABC)

NRTI (TDF vs. ABC)

NRTI (TAF vs. TDF)

Paul E. Sax,¹ Kristine M. Erlandson,² Jordan E. Lake,³ Grace A. McComsey,⁴ Chloe Orkin,⁵ Stefan Esser,⁶ Todd T. Brown,⁷ Jürgen K. Rockstroh,⁸ Xuelian Wei,⁹ Christoph C. Carter,^{9,0} Lijie Zhong,⁹ Diana M. Brainard,⁹ Kathleen Melbourne,⁹ Moupali Das,⁹ Hans-Jürgen Stellbrink,¹⁰ Frank A. Post,^{11,0}

Variable OR 95% CI p value CD4 (<200 vs. ≥200/µL) 4.36 3.6, 5.27 < 0.001 HIV RNA (>100k vs. ≤100k c/mL) 1.65, 2.37 1.98 < 0.001 BMI (normal vs. overweight 1.54 1.27, 1.87 < 0.001 BMI (normal vs. obese) 1.66 1.29, 2.15 < 0.001 Sex (female vs. male) 1.54 1.21, 1.96 < 0.001 Race (black vs. non-black) 1.32 1.1, 1.59 0.003 Third agent (BIC/DTG vs. EFV) 1.82 1.24, 2.66 0.002 Third agent (EVG/c vs. EFV) 1.36 1.04. 1.78 0.026 Third agent (RPV vs. EFV) 1.51 1.03, 2.2 0.035

0.92

1.75

1.19

0.93

1.9

1.29

1.47

0.59, 1.45

1.04, 2.95

0.76, 1.87

0.47, 1.8

1.25, 2.88

0.79, 2.11

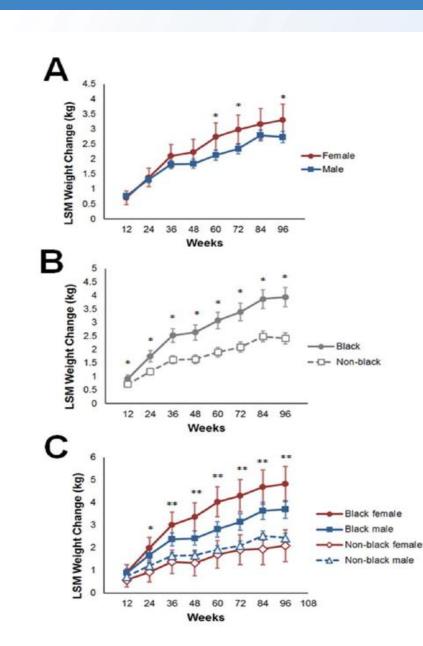
1.14, 1.9

Table 5. Risk factors for significant (≥10%) weight gain in individuals initiating ART.

0.73

0.034

0.44


0.82

0.003

0.31

0.003

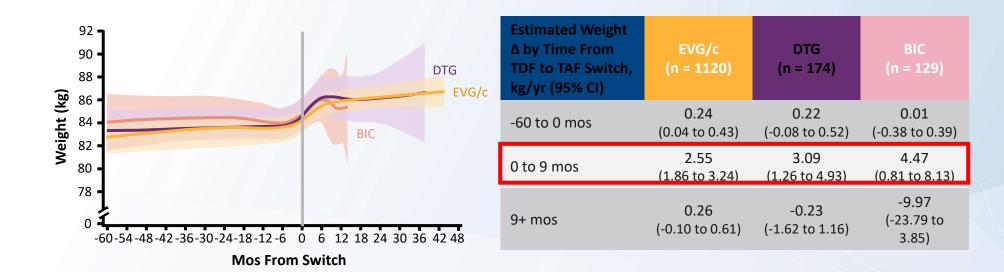
Sax, CID, 2019

Figure 2

OPERA: Longitudinal Prospective Cohort Analysis

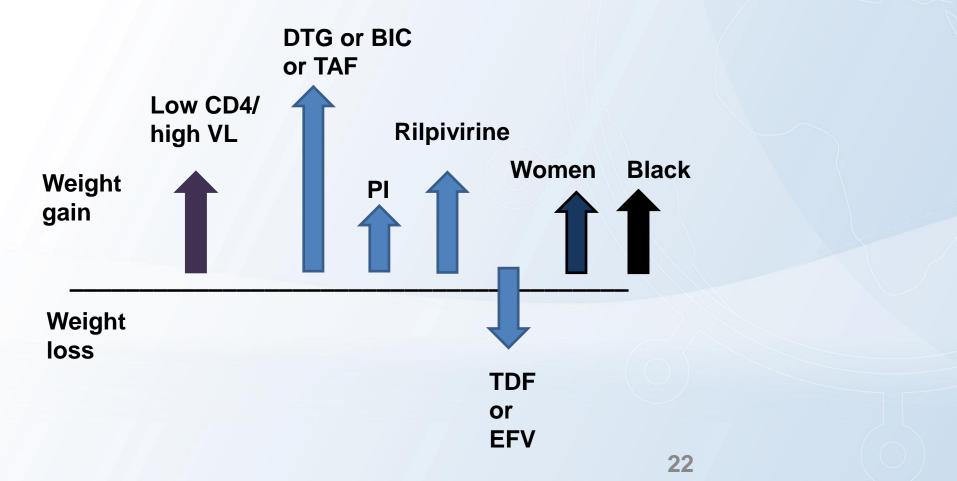
- Routine EHR data collected from ~ 8% of US PWH receiving care (> 115,000 individuals across 65 cities in 19 states and Puerto Rico)
- Current analysis restricted to adults receiving TDF-containing 3-drug ART at BL with ≥ 2 consecutive HIV-1 RNA < 200 copies/mL who switched TDF to TAF

Anchor Agent by Class, %	(n)	Maintained Other ARVs (n = 5479)
INSTIs (n = 3281)	 Elvitegravir/cobicista t Dolutegravir Raltegravir 	73 (2389) 20 (643) 8 (249)
NNRTIs (n = 1452)	RilpivirineNevirapineEfavirenzEtravirine	85 (1238) 12 (176) 2 (26) 1 (12)
Boosted PIs (n = 746)	 Darunavir Atazanavir Lopinavir Fosamprenavir 	68 (504) 28 (211) 3 (22) 1 (9)


Mallon. AIDS 2020. Abstr OAB0604.

Slide credit: <u>clinicaloptions.com</u>

OPERA: Weight Change With Switch From TDF to TAF While Also Switching to an INSTI


Slide credit: clinicaloptions.com

Mallon. AIDS 2020. Abstr OAB0604. Reproduced with permission.

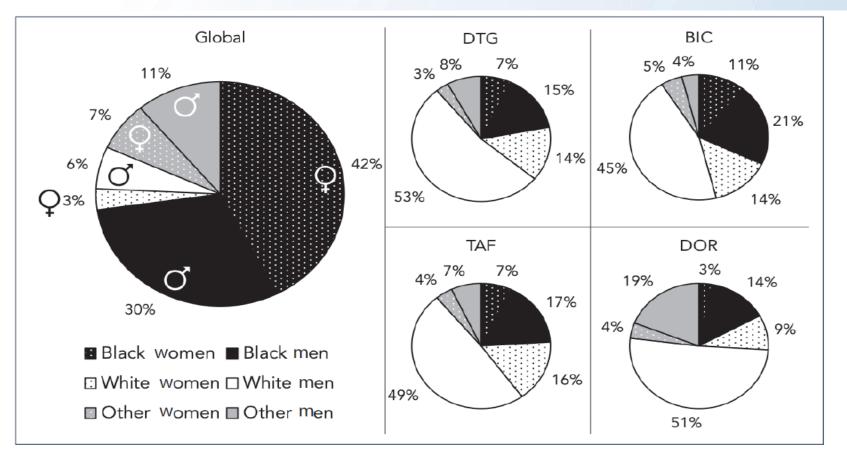
Drivers of weight gain / loss

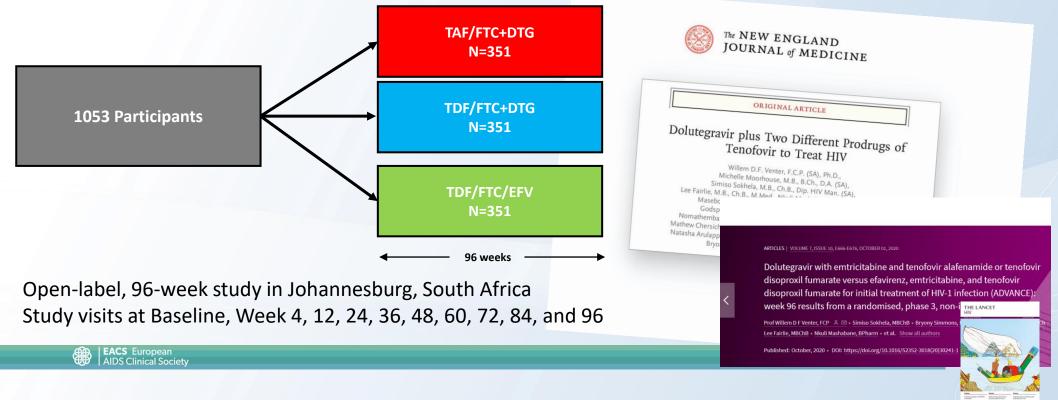
Phase 3 trials of new antiretrovirals are not representative of the global HIV epidemic

Toby Pepperrell¹, Andrew Hill²*, Michelle Moorhouse³, Polly Clayden⁴, Kaitlyn McCann⁵, Simiso Sokhela³, Celicia Serenata⁶, Willem Daniel Francois Venter³

¹ Faculty of Medicine, Imperial College London, UK ² Department of Translational Medicine, Liverpool University, Pharmacology, Liverpool, UK

 Most registration studies done in white males for almost all newer antiretrovirals




Figure 1. Estimated global demographics of PLWH vs RCT demographics. Percentages may be rounded up to make 100. Data are given as percentage. BIC: bictegravir; DOR: doravirine; DTG: dolutegravir; PLWH: people living with HIV; RCT: randomised controlled trial; TAF: tenofovir alafenamide.

ADVANCE: Study design

Inclusion criteria: treatment-naïve, HIV-1 RNA level ≥ 500 copies/mL, no TB or

ducation

And representative by race and gender and geography

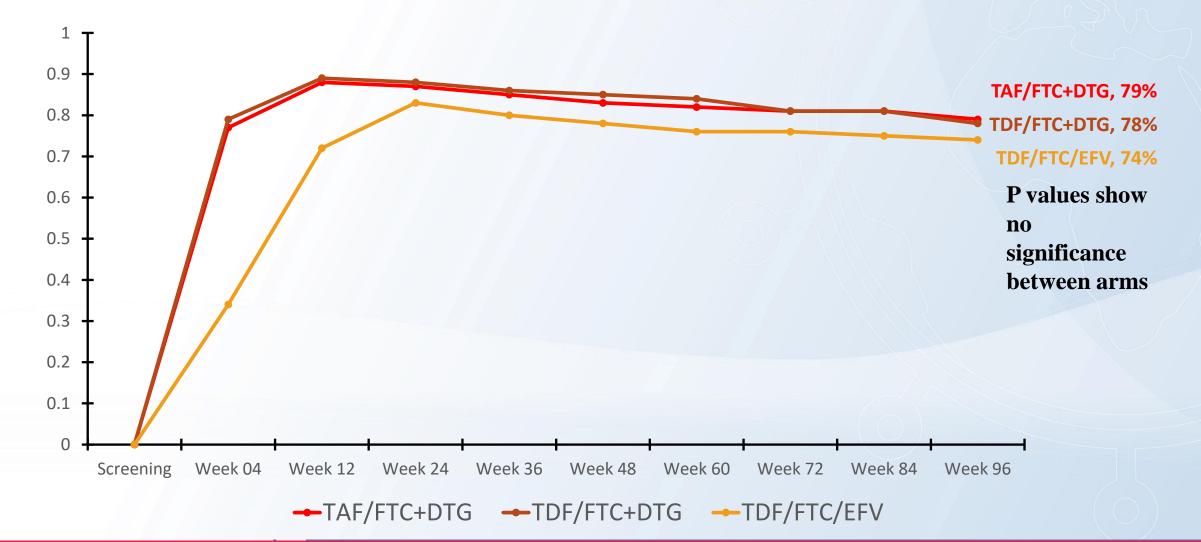
Baseline characteristics (1/2)

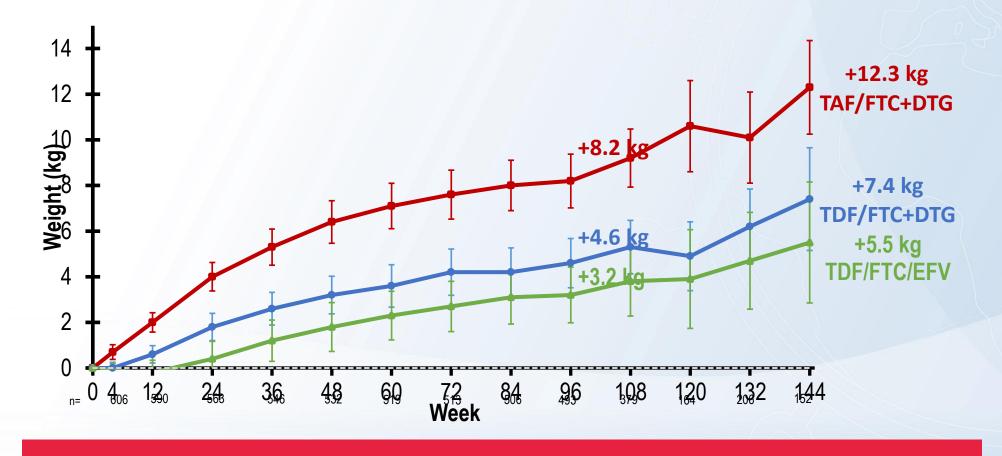
Characteristic	TAF/FTC+DTG (n=351)	TDF/FTC+DTG (n=351)	TDF/FTC/EFV (n=351)
Age, mean (SD), years	33 ± 8	32 ± 8	32 ± 7
Female	61%	59%	57%
Black	99%	100%	100%
Baseline HIV-1 RNA		//Q/T//	
≤100,000 copies/mL	78%	80%	77%
>100,000 copies/mL	22%	20%	23%
CD4+ cell count, mean (SD), cells/mm ³	349 ± 225	323 ± 234	337 ± 222

Weight was high even pre-ART!

Baseline characteristics (2/2)

Characteristic	TAF/FTC+DTG (n=351)	TDF/FTC+DTG (n=351)	TDF/FTC/EFV (n=351)
Weight, mean (kg)	118 8 17 1 57 7		
Male	67.9	67.1	67.3
Female	68.8	69.5	70.2
BMI, mean (kg/m²)			
Male	21.7	21.6	21.8
Female	25.6	26.1	26.1
Categories of BMI, n (%)			
Underweight (< 18.5)	42 (12%)	35 (10%)	37 (11%)
Normal (18.5-25)	177 (51%)	190 (54%)	193 (55%)
Overweight (25-30)	96 (27%)	78 (22%)	77 (22%)
Obese (> 30)	35 (10%)	48 (14%)	44 (13%)



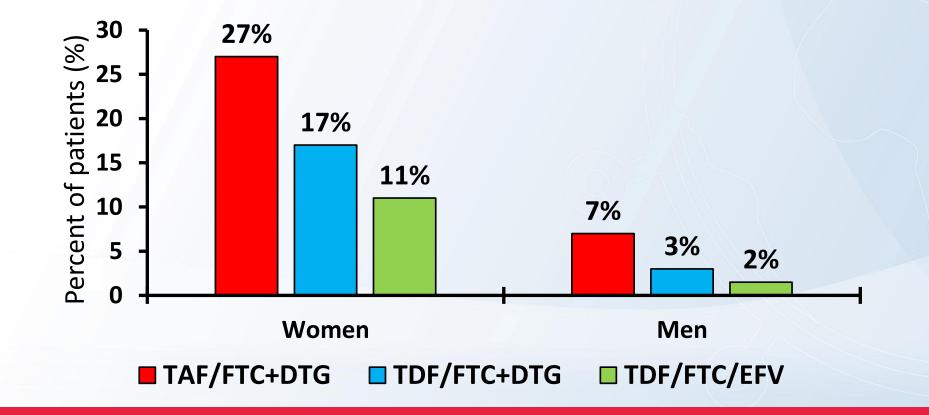

Proportion of participants with HIV-1 RNA level <50 copies/mL by time point (ITT)

Mean change in weight (kg): women

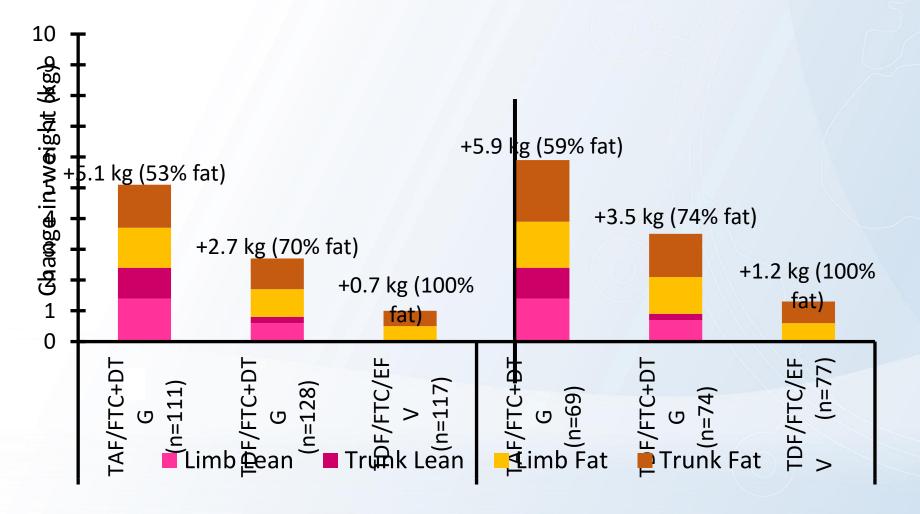
Note: data incomplete to week 144

aighd AMSTERDAM INSTITUTE FOR GLOBAL HEALTH & DEVELOPMENT

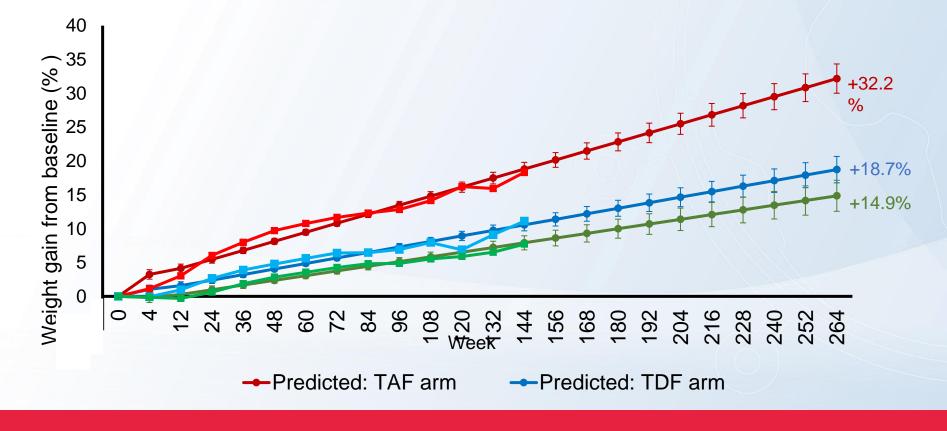
Mean change in weight (kg): men


Note: data incomplete to week 144

Treatment-Emergent Obesity at Week 96



Changes in DXA body composition: Men



EACS European

virology education Linear regression model: predicted mean percentage change in weight from baseline over 5 years in <u>females</u>

virology ducation

NAMSAL - Study design

3 study sites in Yaoundé, Cameroon

Namsal: body weight Week 48 analysis

	TDF/3TC+DTG N=293	TDF/3TC+EFV N=278	p-value
Evolution W48-D0			
Weight gain (kg)	+5.0kg	+3.0kg	<0.001
Weight (% from DO)	+7.3%	+5.3%	0.001
Weight ≥ 10%	38%	29%	0.033
BMI	+1.7	+1.2	<0.001
Obesity incidence (BMI≥30)	36 (12%)	15 (5%)	0.004

Predicted 10-year risks of diabetes and cardiovascular disease in the ADVANCE trial

Andrew Hill¹, Kaitlyn McCann², Ambar Qavi², Bryony Simmons², Victoria Pilkington², Michelle Moorhouse³, Godspower Akopmiemie^{3,}, Simiso Sokhela³, Celicia Serenata³, Alinda Vos⁴, Francois Venter³

¹Liverpool University, Pharmacology, Liverpool, United Kingdom, ²Imperial College London, Faculty of Medicine, London, United Kingdom ³Ezintsha, Wits Reproductive Health and HIV Institute, Johannesburg, South Africa; ⁴University Medical Center Utrecht, Epidemiology, Utrecht, Netherlands

QDIABETES Equation Results: Females (Linear Predictions)

Treatment arm / 10 year diabetes risk	Median change from baseline to:				
	Baseline	Week 96 (Observed)	Year 3	Year 4	Year 5
TAF/FTC/DTG n = 120	0.30%	+1.20%	+1.40%	+2.00%	+2.50%
TDF/FTC/DTG n = 111	0.40%	+0.50%	+0.60%	+0.90%	+1.30%
TDF/FTC/EFV n = 116	0.30%	+0.80%	+1.00%	+1.30%	+1.50%

*TAF/FTC/DTG risk significantly higher than TDF/FTC/DTG at Week 96 (p=0.028); Year 3 (p= 0.025); Year 4 (p= 0.015); Year 5 (p= 0.014)

12 additional cases of diabetes in TAF vs TDF per 1000 females over 30 treated for 5 years

Conference on Retroviruses and Opportunistic Infections 2020

CHANGES IN BODY MASS INDEX AND THE RISK OF CARDIOVASCULAR DISEASE: THE D:A:D STUDY

<u>Kathy Petoumenos</u>, Locadiah Kuwanda, Lene Ryom, Amanda Mocroft, Peter Reiss, Stephane De Wit, Christian Pradier, Andrew Philips, Camilla I Hatleberg, Antonella d'Arminio Monforte, Rainer Weber, Caroline Sabin, Jens Lundgren, Matthew G Law

On behalf of the D:A:D Study group

Conclusion

Increases in BMI across all levels of baseline BMI were consistently associated with increased risk of DM

- Increases in BMI across all levels of baseline BMI were not associated with an increased risk of CVD
 - Some evidence of an increased risk of CVD with a decrease in BMI (especially at low baseline BMI)
- The extent to which these results apply to PLHIV with increased weight while receiving contemporary ART are uncertain
- Further analysis of weight change, INSTI/TAF and clinical events is needed

Tsepamo Update: Prevalence of NTDs by ARV Exposure

	Conception			Pregnancy		
Parameter	DTG (n = 3591)	Non-DTG (n = 19,361)	EFV (n = 10,958)	DTG (n = 4581)	HIV Negative (n = 119,630)	
Total NTDs per exposures, n/N	7/3591	21/19,361	8/10,958	2/4581	87/119,630	
NTD prevalence, % (95% CI) April 2019	0.30 (0.13-0.69)	0.10 (0.06-0.17)	0.04 (0.01-0.11)	0.03 (0.00-0.15)	0.08 (0.06-0.10)	
 April 2020 	0.19 (0.09-0.40)	0.11 (0.07-0.17)	0.07 (0.03-0.17)	0.04 (0.01-0.16)	0.07 (0.06-0.09)	
Prevalence diff. with DTG conception, Apr 2020, % (95% CI)	Ref	0.09 (-0.03 to 0.30)	Anencephaly Closu	ure 2 Hind	.12 to 32.0)	
NTDs per exposures between April 2019 and April 2020, n/N Zash, AIDS 2020, Abstr OAXLB01.	2/1908*	6/4569	Closed spina bifida Posterior		opore 0,258 ure 1 options.com	
*Includes 1 lumbosacral myelomeningocele (spina bifida) and 1 e	ncephalocele.	Open		Cranio- rachischisis	

virology **ucation**

Predicting the risk of adverse pregnancy outcomes due to ART-induced weight gain

Sumbul Asif¹, Evangelina Baxevanidi¹, Andrew Hill², Celicia Serenata³, WD Francois Venter³, Lee Fairlie³, Masebole Masenya³, Nomathemba Chandiwana³, Simiso Sokhela³

1. Imperial College London, Faculty of Medicine, London, United Kingdom, 2. Liverpool University, Department of Translational Medicine, Liverpool, United Kingdom, 3. Ezintsha, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa

	Baseline	TAF/FTC+DTG	TDF/FTC+DTG	TDF/FTC/EFV
APO	Dasenne	96-weeks	96-weeks	96-weeks
Preterm delivery	70	73	71	70
Gestational Hypertension	28	39	34	29
Gestational diabetes mellitus	16	23	19	16
Pre-eclampsia	25	35	30	26
Postpartum haemorrhage	112	115	114	112
Caesarean section	213	232	224	215
Small-for-gestational-age infants	89	87	88	89
Large-for-gestational-age infants	134	154	145	137
Low birthweight infants	64	65	64	64
Macrosomia	31	37	34	31
Stillbirth	4	4	4	4
Neonatal death	2	2	2	2
Neural tube defect	0	0	0	0

Weight gain likely to have a much greater impact...

On pregnancy outcomes than DTG teratogenicity!

CYP2B6 Genotype and Weight Gain Differences Between Dolutegravir and Efavirenz

<u>Rulan Griesel</u>, Gary Maartens, Simiso Sokhela, Godspower Akpomiemie, Francois Venter, Michelle Moorhouse, Phumla Sinxadi

CID, 2020

So many questions...

- Is it new ARVs and multiple off-target toxicities? Or is it simply tolerance and a return to a "normal" weight gain trajectory?
- If former may see differences in future non-inferiority studies
- If the latter: we should see no change in head-to-head studies with new regimens
- Imperative that done among black women

Obesity IS an issue... or is it?

THE LANCET

Online First	Current Issue	All Issues	Special Issues	Multimedia	Information f	or Authors	
		All Content		- Search	Advanced S	earch	
< Previous	Article Vol	ume 388, I	No. 10046, p776-	-786, 20 August	2016	Next Article >	Ac
Articles							Arl

Body-mass index and all-cause mortality: individualparticipant-data meta-analysis of 239 prospective studies in four continents

"The associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents."

BMI classification				
Underweight	< 18.5			
Normal range	18.5 - 24.9			
Overweight	≥ 25.0			
Preobese	25.0 - 29.9			
Obese	≥ 30.0			
Obese class I	30.0 - 34.9			
Obese class II	35.0 - 39.9			
Obese class III	≥ 40.0			

Review > J Cachexia Sarcopenia Muscle. 2019 Feb;10(1):9-13. doi: 10.1002/jcsm.12378. Epub 2019 Jan 17.

Flawed methods and inappropriate conclusions for health policy on overweight and obesity: the Global BMI Mortality Collaboration meta-analysis

Katherine M Flegal ¹, John P A Ioannidis ¹ ² ³ ⁴, Wolfram Doehner ⁵ ⁶ ⁷

Weight is culturally sensitive...

- Different communities = different perceptions of what is healthy, desirable, sexy
- Stigma that skinny = HIV, TB, other illness
- Advertising and magazines steadily skinnier models
- Self-perception is important (and flawed)

Obesity

BMI and All-Cause Mortality in a Population-Based Cohort in Rural South Africa

Jennifer Manne-Goehler ^[10] 1.2.3, Kathy Baisley^{4,5}, Alain Vandormael^{6,7}, Till Bärnighausen^{5,6,8}, Frank Tanser^{5,9,10}, Kobus Herbst^{5,11}, Deenan Pillay^{5,12}, and Mark J. Siedner^{1,2,3,5}

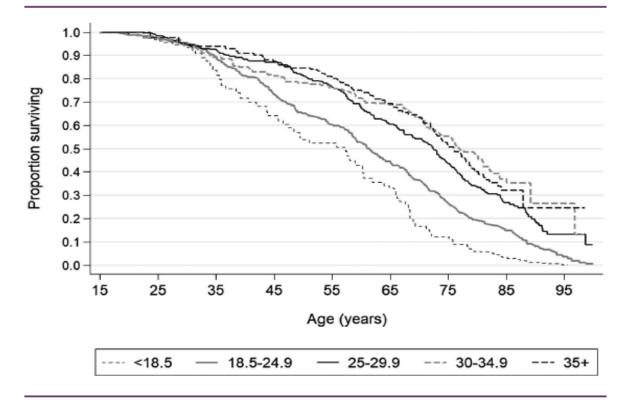


Figure 1 Kaplan-Meier estimates of survival, by BMI group.

CDC questioned the impact of weight years

ago...

- 2005 gross overestimation of impact of obesity on disease
- And that BMI is a rubbish marker

BMI classification				
Underweight	< 18.5			
Normal range	18.5 - 24.9			
Overweight	≥ 25.0			
Preobese	25.0 - 29.9			
Obese	≥ 30.0			
Obese class I	30.0 - 34.9			
Obese class II	35.0 - 39.9			
Obese class III	≥ 40.0			

Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005 Apr 20;293(15):1861-7

- NCHS Data Brief ■ No. 82 ■ January 2012 —

Prevalence of Obesity in the United States, 2009–2010

Cynthia L. Ogden, Ph.D.; Margaret D. Carroll, M.S.P.H.; Brian K. Kit, M.D., M.P.H.; and Katherine M. Flegal, Ph.D.

Review > J Cachexia Sarcopenia Muscle. 2019 Feb;10(1):9-13. doi: 10.1002/jcsm.12378. Epub 2019 Jan 17. Flegal KM, Kit BK, Orpana H, Graubard BI, Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013 Jan 2;309(1):71-82

Flawed methods and inappropriate conclusions for health policy on overweight and obesity: the Global BMI Mortality Collaboration meta-analysis

Katherine M Flegal ¹, John P A Ioannidis ¹ ² ³ ⁴, Wolfram Doehner ⁵ ⁶ ⁷

People make a LOT of money from making you feel horrible about your body – implicated in everything from depression to anorexia

• And we've made many people rich

And we aren't really sure what is a "healthy diet"

HEALTH

A Call for a Low-Carb Diet

By ANAHAD O'CONNOR SEPT. 1, 2014

PDF

Long-Term Effects of 4 Popular Die on Weight Loss and Cardiovascular Risk Factors: A Systematic Review of Randomized Controlled Trials *Circ Cardiovasc Qual Outcomes.* 2014;CIRCOUTCOMES.113.000723published online before print November 11 2014,

Home » Low-Carb Diet » 23 Studies on Low-Carb and Low-Fat Diets - Time to Retire The Fad

THE LANCET

Search for in All Fields

Home | Journals | Content Collections | Multimedia | Conf

The Lancet, <u>Volume 384, Issue 9953</u>, Pages 1479 - 1480, 25 October 2014 doi:10.1016/S0140-6736(14)61413-6 ⑦ <u>Cite or Link Using DOI</u>

Copyright © 2014 Elsevier Ltd All rights reserved.

Low carbohydrate diets: going against the grain

Jim Mann 🚧, Rachael McLean a, Murray Skeaff a, Lisa Te Morenga a

Low carbohydrate high fat (LCHF) diets continue to attract media attention, despite a subsi

23 Studies on Low-Carb and Low-Fat Diets – Time to Retire The Fad

October 15, 2013 | by Kris Gunnars | 104,408 views | C

The NEW ENGLAND JOURNAL of MEDICINE

THE LANCET Diabetes & Endocrinology

The effect of rate of weight loss on long-term weight manage

article can be found in the following collections: Nutrition & Metz

a randomised controlled trial

ESTABLISHED IN 1812

Primary Prevention of Cardiovascular Disease with a Mediterranean Diet

APRIL 4, 2013

Ramón Estruch, M.D., Ph.D., Emilio Ros, M.D., Ph.D., Jordi Salas-Salvadó, M.D., Ph.D.,

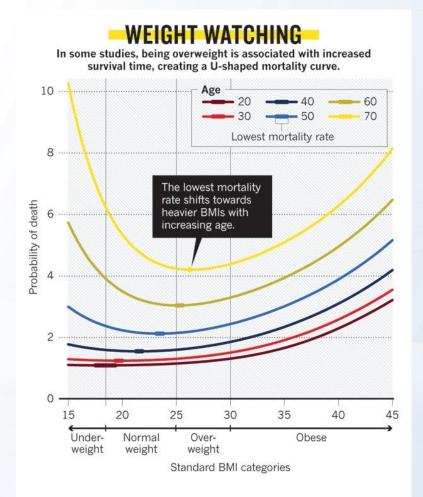
VOL. 368 NO. 14

Being obese is linked to lots of issues

- Diabetes (glucose)
- Hypertension (blood pressure)
- Lipids (cholesterol, LDL ('bad cholesterol')
- Strokes
- Heart attacks
- Cancer
- Joint pain
- Mental health issues
- Poor COVID outcomes

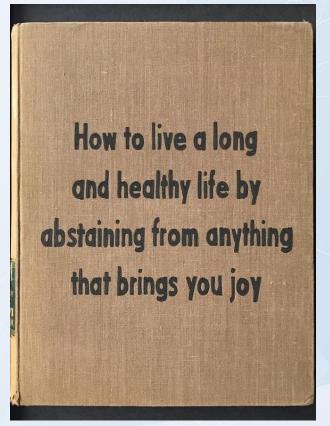
THE LAN	NCE	Т					
Online First Current Issue	All Issues	Special Issues	Multimedia	Information	for Authors		
	All Content		- Search	Advanced S	earch		
< Previous Article Vo	lume 388, I	No. 10046, p776	–786, 20 August	2016	Next Article >	Ac	
Articles						Arl	
Body-mass index and all-cause mortality: individual- participant-data meta-analysis of 239 prospective							

"The associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents."


studies in four continents

But then, so is being skinny.... (like dying!)

Nature, 2013


"Seriously, what would you make of all this evidence if nobody ever told you that fat is bad?" -Kristin Dunkle, Chief Specialist Scientist, Gender and Health Research Unit, SA Medical Research Council

 "Where health advice is not based on actual evidence, it is likely to give expression to individual and social intuitions, and these frequently seem to express Calvanist moralistic ideas about how we must be improved by self-denial and suffering." – Professor Lucy Allais, Centre for Ethics, University of the Witwatersrand

www.thelancet.com/hiv Vol7 June 2020

Conclusions

Weighing considerations with newer antiretrovirals

 389
 The combination of tenofovir alafenamide, emtricitabine, and bictegravir was approved by the US Food and Drug
 sex-aggregated rise of 5 kg. Although this study did not compare tenofovir disoproxil fumarate with tenofovir

- Weight gain is real definitely <u>associated</u> with DTG/BIC, and with TAF (and rilpivirine)
- DTG may not be as perfect as we hoped but for most of the world – only efavirenz!
- No data on what to do if someone is gaining weight on either DTG or EFV (or anything else) Orkin data on doravirine promising
- TAF unlikely to be recommended in Africa (?elsewhere)
- Major public health headache swapping one epidemic for another – need new options

Thank you!

