Session 3: Chronic Inflammation

Multisystem Inflammatory Syndrome in Children (MIS-C) Post-SARS-CoV-2 Infection

Carrie L. Lucas, PhD Yale University, United States

Multisystem Inflammatory Syndrome in Children (MIS-C) Post-SARS-CoV-2 Infection

Carrie L. Lucas, PhD Associate Professor Department of Immunobiology

September 9, 2022

Rare diseases, common insights

Graphic by Bruce Rolff, Shutterstock.

PI3K gene defects: PIK3CD, PIK3R1 = **APDS** PIK3CG = **IPGS**

Deficiency in ELF4, X-linked (**DEX**)

In Spring of 2020, we pivoted to apply our expertise on severe, rare, pediatric immune diseases to SARS-CoV-2-related disease.

Immunity

CellPress

Article

Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children

Anjali Ramaswamy,^{1,14} Nina N. Brodsky,^{1,2,14} Tomokazu S. Sumida,^{1,3,14} Michela Comi,^{1,3,14} Hiromitsu Asashima,^{1,3} Kenneth B. Hoehn,⁴ Ningshan Li,⁵ Yunqing Liu,⁵ Aagam Shah,^{6,7} Neal G. Ravindra,^{6,7} Jason Bishai,^{6,7} Alamzeb Khan,² William Lau,^{8,9} Brian Sellers,⁸ Neha Bansal,^{8,9} Pamela Guerrerio,¹⁰ Avraham Unterman,¹¹ Victoria Habet,² Andrew J. Rice,¹ Jason Catanzaro,² Harsha Chandnani,¹² Merrick Lopez,¹² Naftali Kaminski,¹¹ Charles S. Dela Cruz,¹¹ John S. Tsang,^{8,9} Zuoheng Wang,⁵ Xiting Yan,^{5,7} Steven H. Kleinstein,^{4,13} David van Dijk,^{6,7} Richard W. Pierce,² David A. Hafler,^{1,3} and Carrie L. Lucas^{1,15,*}

Multisystem inflammatory syndrome in children (MIS-C)

- April 2020: Rise in Kawasaki-like syndrome recognized in Italy
- April/May 2020: Royal College of Paediatrics, NYC, CDC, ECDC, WHO, PCIS issue health alerts

Some overlap with:

- Kawasaki disease/shock
- Myocarditis
- Septic shock
- TSS Staph/Strep

Case Definition

- An individual aged <21 years presenting with fever*, laboratory evidence of inflammation**, and evidence of clinically severe illness requiring hospitalization, with multisystem (>2) organ involvement (cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic or neurological); AND
- No alternative plausible diagnoses; AND
- Positive for current or recent SARS-CoV-2 infection by RT-PCR, serology, or antigen test; or exposure to a suspected or confirmed COVID-19 case within the 4 weeks prior to the onset of symptoms

23 MIS-C patients in our study were categorized clinically as severe or moderate

Severe: required vasoactive medications and/or positive pressure ventilatory (PPV) support.

<u>Moderate</u>: did not require this level of support, although some did require ICU admission.

Serum proteomics highlights cytokine storm pathways

Yale SCHOOL OF MEDICINE Collaboration with laboratory of Dr. John Tsang, NIAID

8

Leveraging scRNAseq to elucidate MIS-C pathophysiology

MIS-C is a post-infectious inflammatory episode

NB: -No EBV/CMV reads detected

Yale school of medicine

10

Reduced HLA-II and CD86 with sepsis-like signature

Recap

- No evidence of:
 - gene signature for respiratory viral/bacterial infection
 - EBV/CMV reactivation or correlation with initial EBV/CMV exposure
- Cannot rule out persistence of virus/particles in tissues (gut?)
- Innate response includes: elevated cytokines, S100A genes, and cytotoxicity signature of NK cells
- What about the adaptive immune response by T/B cells?

Expansion of short-lived plasmablasts enriched for IgG1/IgG3

Severe MIS-C patients exhibit: elevated serum E-selectin

Severe MIS-C patients exhibit: increased serum IgG binding to endothelial cells

- It is unknown if autoantibodies are a cause or consequence of tissue damage.
- How to account for the delay between SARS-CoV-2 infection and MIS-C?

Superantigen drives broad activation of T cells expressing specific β chains

Examples:

- Staphylococcal toxic shock toxin TSS
- Staphylococcal enterotoxins food poisoning
- Staphylococcal exfoliating toxins scalded skin syndrome
- Streptococcal pyrogenic exotoxins shock
- Is there evidence for this in MIS-C?

Type of response

Severe MIS-C patients exhibit: TCR skewing with expanded TRBV11-2 (TCR V β 21.3)

Also reported by Moshe Arditi's team in Porritt et al. JCI 2021 and seen by others (Alex Belot, Nichola Cooper, Filomeen Haerynck/Simon Tavernier, Gigi Notarangelo, etc.)

TRBV11-2+ T cells are activated/memory subtypes

Investigations ongoing to further characterize these T cells.

- High for activation markers
- No specific TCR alpha chain pairing
- No evidence conclusively showing this is driven directly by SARS-CoV-2 (adult data)

Hypothetical drivers of MIS-C

Reduced incidence of MIS-C over time

Table 2. Nationwide Data on the Incidence of MIS-C During the Alpha, Delta, and Omicron Waves in Israel

Pandemic wave data ^a	Alpha	Delta	Omicron	Total
MIS-C cases, No. (%) ^b	103 (40.5)	115 (45.3)	36 (14.2)	254
SARS-CoV-2 infections in persons younger than 18 y, No. ^c	188 800	233 585	946 779	1 369 164
MIS-C incidence rate ^d	54.5	49.2	3.8	
MIS-C incidence rate ratio (95% CI) ^e	14.34 (9.81-20.96)	12.94 (8.90-18.81)	1 [Reference]	

^a Each wave was a 16-week period: Alpha, December 20, 2020, to April 10, 2021; Delta, July 18, 2021, to November 13, 2021; and Omicron, November 21, 2021, to March 12, 2022.

^d Incidence rates were calculated using number of cases as numerator, with number of SARS-CoV-2 pediatric infections as denominator, per 100 000.

^b Cases of multisystem inflammatory syndrome in children (MIS-C) were limited a referent group, with 95% Cls.

to patients aged 0 to 18 years.

^e Incidence rate ratios use the rate of MIS-C cases in the Omicron wave as

^c According to the Israel Ministry of Health SARS-CoV-2 data set.

Potentially relevant variables: prior CoV2 infection, vaccination, CoV2 variant, release from guarantining

Yale school of medicine

JAMA June 28, 2022 Volume 327, Number 24 2452 22

Acknowledgements

Patients and families

Lucas Lab:

- Nina Brodsky
- Anjali Ramaswamy
- Andrew Rice
- David Hafler Lab:
 - Tomo Sumida
 - Hiro Asashima
 - Michela Comi

Jordan Pober

Ric Pierce Lab:

• Alamzeb Khan

John Tsang (NIH)

- Steve Kleinstein Lab:
 - Kenneth Hoehn
- Xiting Yan Lab:
 - Ningshan Li
- David Van Dijk Lab:
 - Aagam Shah
 - Jason Bishai
- Naftali Kaminski Lab:
 - Rami Unterman

- Pediatric Critical Care
 - Nurses
 - Victoria Habet
- Pediatric Infectious Disease
 - Carlos Oliveira
- Jason Catanzaro
- Yale Biorepository team
 - Albert Ko
 - Akiko Iwasaki
- Harsha Chandnani, Merrick Lopez (Loma Linda University)
- Biorender: schematics
- Funding:

