
Session 2: Acute Inflammation - Part 1

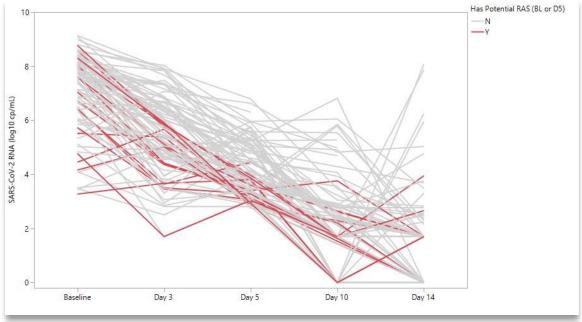
Abstract 2: Clinical Rebound of COVID-19 Following Nirmatrelvir/Ritonavir Is Not Associated With Delayed Immune Response or Severe Disease

Brian Epling

NIH, United States

Clinical, Virologic, & Immunologic Evaluation of Rebound COVID-19 After Nirmatrelvir-Ritonavir

Brian P. Epling*¹, Joseph M. Rocco*¹, Kristin L. Boswell², Elizabeth Laidlaw¹, Frances Galindo¹, Anela Kellogg³, Sanchita Das⁴, Allison Roder⁵, Elodie Ghedin⁵, Allie Kreitman⁵, Robin L. Dewar⁶, Sophie E. M. Kelly⁷, Heather Kalish⁷, Tauseef Rehman⁶, Jeroen Highbarger⁶, Adam Rupert⁸, Gregory Kocher⁹, Michael R. Holbrook⁹, Andrea Lisco¹, Maura Manion¹, Richard A. Koup², Irini Sereti¹


¹Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; ²Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; ³Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA; ⁴Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; ⁵Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; ⁶Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, Maryland, USA; ⁸AIDS Monitoring Laboratory, Frederick National Laboratory, Frederick, Maryland, USA; and ⁹Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA

Presenter: Brian Epling

September 8th, 2022

Background

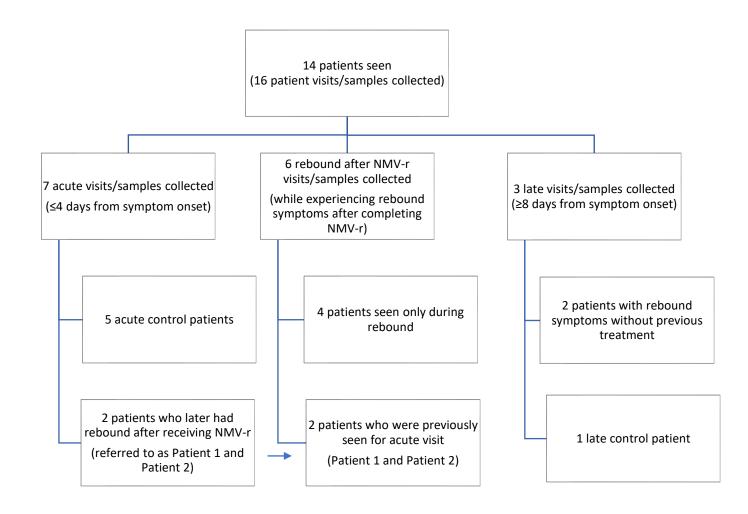
- December 2021: Nirmatrelvir-ritonavir (NMV-r/Paxlovid) granted EUA by the FDA, first SARS-CoV-2 protease inhibitor to be made available
- Reduced risk of hospitalization and death by COVID-19 in unvaccinated high risk adults (0.72% vs. 6.53% treated with placebo)
- Several patients (in both placebo and NMV-r groups) demonstrated viral rebound at day 10-14
- Multiple reports of patients experiencing symptomatic rebound, culminating in a CDC Health Advisory

Graphic from EUA CDER Review

- Charness M, Gupta K, Stack G, et al. Rapid Relapse of Symptomatic Omicron SARS-CoV- 2 Infection Following Early Suppression with Nirmatrelvir/Ritonavir. Research Square preprint, 2022.
- Gupta K, Strymish J, Stack G, Charness M. Rapid Relapse of Symptomatic SARS-CoV-2 Infection Following Early Suppression with Nirmatrelvir/Ritonavir. medRxiv Preprint 2022.
- Ranganath N, O'Horo JC, Challener DW, et al. Rebound Phenomenon after Nirmatrelvir/Ritonavir Treatment of Coronavirus Disease-2019 in High-Risk Persons. Clin Infect Dis 2022.
- Carlin AF, Clark AE, Chaillon A, et al. Virologic and Immunologic Characterization of COVID-19 Recrudescence after Nirmatrelvir/Ritonavir Treatment. Clinical Infectious Diseases 2022 (accepted manuscript).

Emergency Use Authorization (EUA) for Paxlovid (nirmatrelvir tablets co-packaged with ritonavir tablets) Center for Drug Evaluation and Research (CDER) Review. Center for Drug Evaluation and Research (CDER), 2021

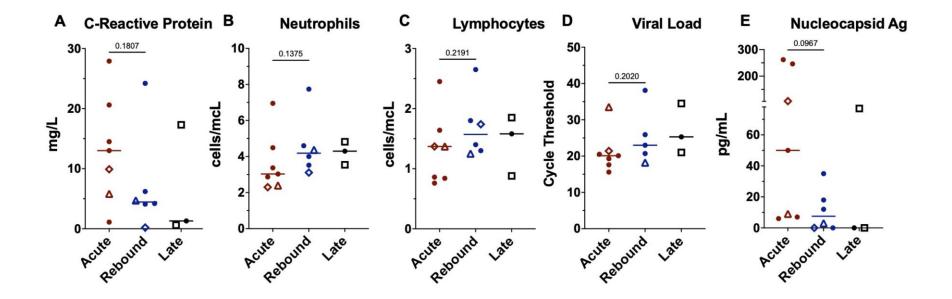
Hammond J, Leister-Tebbe H, Gardner A, et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N Engl J Med 2022; 386(15): 1397-408.


Questions

- Etiology?
 - Immune evasion because of early viral suppression?
- Risk of severe disease?

• Viral transmissibility?

Role of NMV-r resistance?


Study Participants

Clinical Evaluation (I)

- NMV-r started between 1-4 days after initial symptom onset
- Median time to symptom recurrence was 12.5 days after initial symptom onset in NMV-r rebound group
 - 6.5 days after completing NMV-r
- Rebound symptom severity:
 - Milder: 6 (2/2 in rebound without treatment)
 - Similar: 1
 - Worse: 1
- No rebound patients required additional treatment or hospitalization

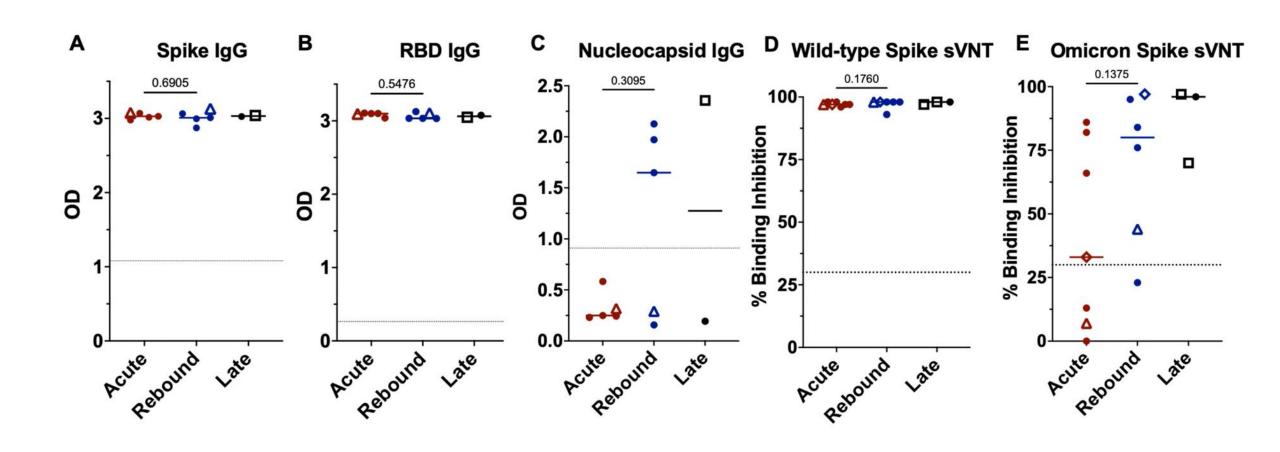
Clinical Evaluation (II)

Clinical Evaluation — Conclusions

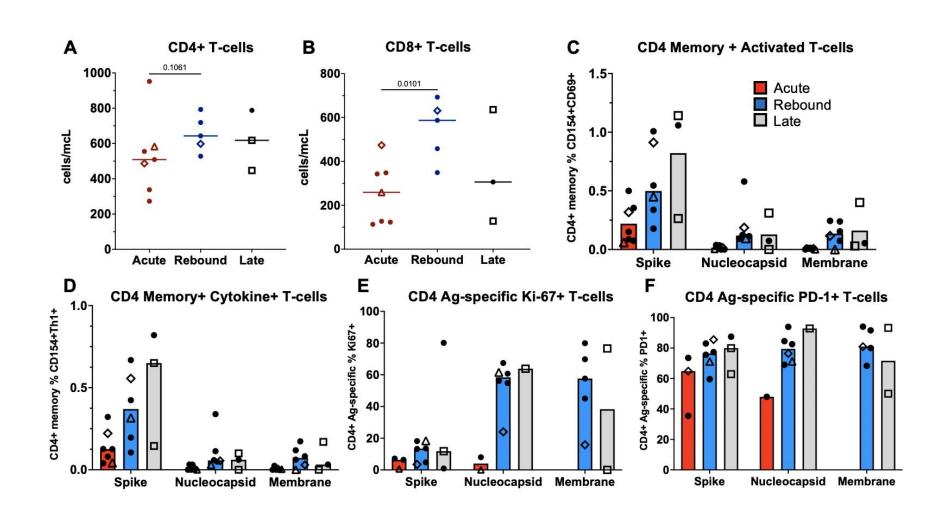
- Rebound symptoms occurred after starting NMV-r on a range of days of illness (1 to 4); no clear impact of delayed start
- Symptoms returned on a range of days
 - 11-15 days in NMV-r rebound group
 - 9-20 in rebound without treatment group

- Most with improved symptoms
- No evidence of progression to severe disease
- Decreased CRP in rebound vs acute

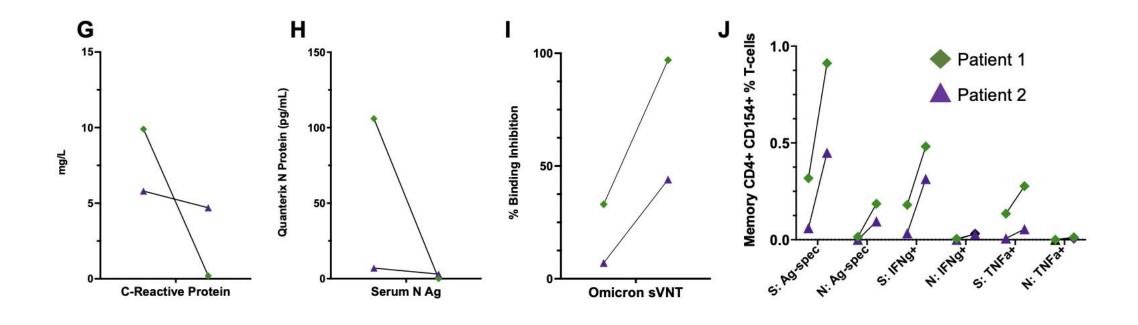
Virologic Evaluation

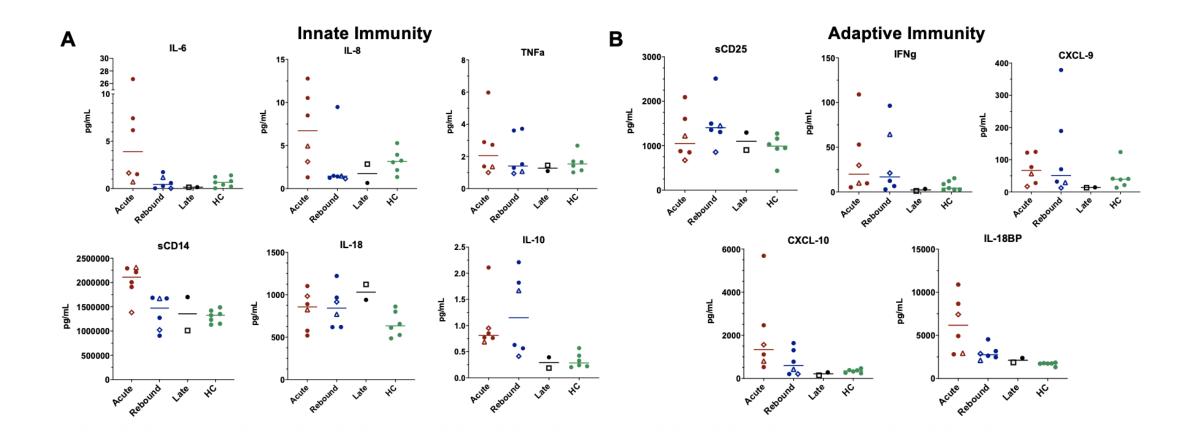

• SARS-CoV-2 from nasal swabs cultured with on Vero E6 cells

- Infectious replication-competent virus isolated from 1/8 rebound patients
 - From patient on a TNF- α inhibitor


sample

- Isolated from 5/8 after adding polybrene
- No subsequent transmissions from our rebound cases
- No resistance mutations identified by sequencing including 1 longitudinal
 - Boucau J, Uddin R, Marino C, et al. Characterization of virologic rebound following nirmatrelvir-ritonavir treatment for COVID-19. Clin Infect Dis 2022.
 - Davis HE, Morgan JR, Yarmusha ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophysical Chemistry 2002; (97): 159-72.


Immunologic Evaluation – Antibody levels and sVNT


Immunologic Evaluation – T cell responses

Immunologic Evaluation – Longitudinal Patients

Immunologic Evaluation – Biomarkers

Key Findings

• Clinical: Most patients had improved symptoms at rebound; no patients developed severe disease or required additional treatment

Virologic:

- No viral resistance mutations identified
- Infectious replication-competent virus isolated from 1/8 rebound patients, 5/8 after adding polybrene; ?potential of transmission

• Immunologic: Adaptive immunity against SARS-CoV-2 appeared intact

Conclusions & Next Steps

 Pathogenesis of rebound may be caused by a more robust immune response rather than uncontrolled viral replication

 Immunocompromised patients who cannot rely on adaptive immune responses may require prolonged or additional therapies

 Further detailed evaluation in larger cohorts is required to assess the incidence as well as the clinical and epidemiologic implications of rebound COVID-19