

Westyn Branch-Elliman, MD, MMSc, FSHEA Infectious Diseases Consultant, VA Boston Healthcare System Associate Professor of Medicine, Harvard Medical School

International COVID-19 Vaccines Workshop
December 14, 2022

Disclosures

 Site PI for PINETREE Study (Gilead Sciences, Funds to Institution)

Rationale

Identification of patient profiles with persistent risk of severe COVID-19 despite vaccination remains an important clinical question

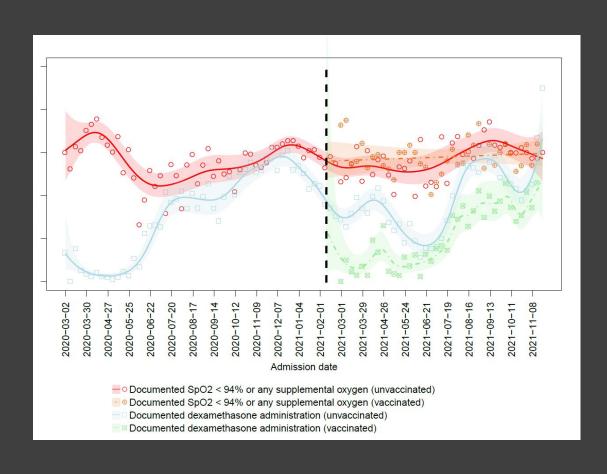
- Risk profiles can be used to target different mitigation strategies (e.g., repeated boosting campaigns, early treatment) to those who remain at high risk of severe disease
- Identification of risk factors the first step toward developing decision support tools to inform clinical practice

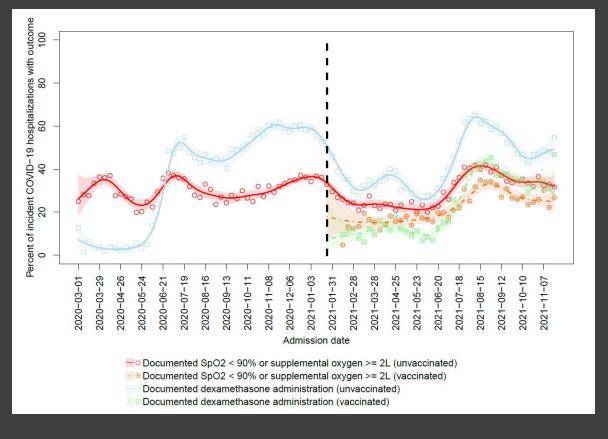
Methods:

Risk Factors for Severe Breakthrough Infections

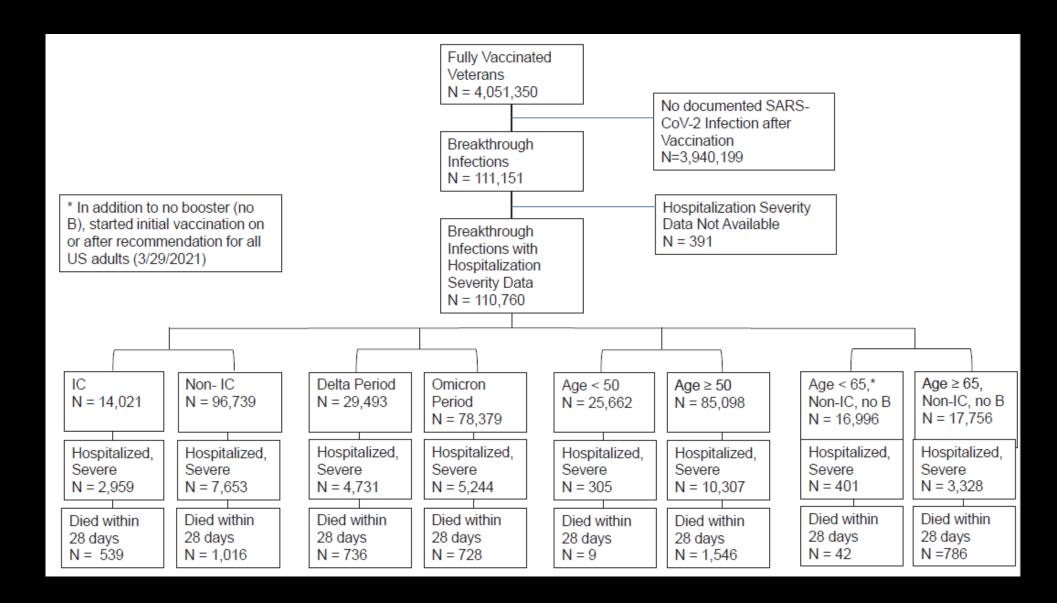
Cohort Inclusion:

 Nationwide, retrospective cohort of all Veterans who received the primary COVID-19 vaccination series and who subsequently developed microbiologically-confirmed SARS-COV-2


Outcomes:

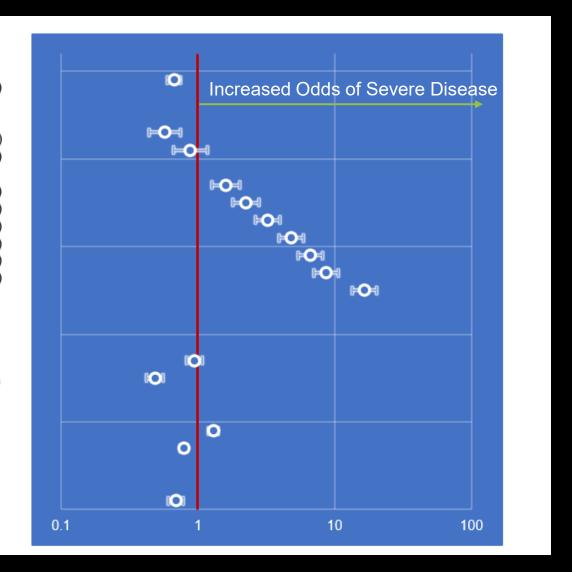

- Non-severe: Outpatients or inpatients with mild disease
- Severe: Inpatients with moderate to severe disease defined by SpO2 and/or receipt of supplemental oxygen and/or dexamethasone, ICU patients, patients who died within 30 days of COVID-19 diagnosis

Exposures:


- Demographics, comorbidities, administration of immunocompromising medications, vaccinerelated variables
- Study period: 12/15/2020-2/28/2022
- Analysis: Logistic Regression

Number of Severe Hospitalizations Depends Upon Definition Selected

Cohort Creation and Outcomes

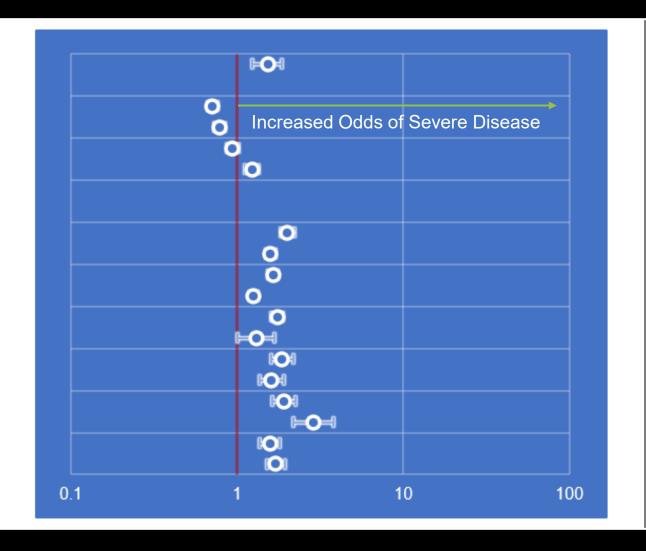


Risk Factors for Severe Breakthrough Infection

- The strongest association with severe disease after vaccination was age
 - Age ≥ 50 with an adjusted odds ratio (aOR) 1.42 (CI 1.40 - 1.44) per 5-year increase
 - Age ≥ 80 had aOR 16.1 (CI 13.1 19.9) relative to patients aged 45-50.
- Immunocompromising conditions were also associated with increased risk of severe disease
 - Immunosuppressive medications: aORs 1.66–2.80
 - Cytotoxic chemotherapy: aOR 2.71, CI 2.27–3.24 at the time of exposure
 - Leukemias/lymphomas: aOR 1.87, CI 1.61–2.17
- Chronic conditions associated with end-organ disease
 - Heart failure: aOR 1.74, CI 1.61-1.88
 - Dementia: aOR 2.01, CI 1.83-2.20
 - Chronic kidney disease: aOR 1.59, CI 1.49-1.69
- Receipt of an additional (booster) dose of vaccine
 - aOR 0.50

Demographic and Vaccine-Related Risk Factors

	Severe	Non	OR (95% CI)
Sex			
Male	10225	87389	1.0 (R)
Female	387	22759	0.67 (0.60 – 0.75)
Age			
< 40	110	13004	0.57 (0.44 - 0.75)
40 – 45	88	6153	0.88 (0.66 - 1.18)
45 – 50	107	6200	1.0 (R)
50 – 55	277	9444	1.60 (1.27 - 2.01)
55 – 60	476	10458	2.24 (1.80 - 2.78)
60 – 65	889	12082	3.24 (2.64 - 3.99)
65 – 70	1340	11013	4.82 (3.93 - 5.92)
70 – 75	2624	15703	6.63 (5.42 - 8.11)
75 – 80	2016	9546	8.72 (7.10 - 10.7)
≥ 80	2685	6545	16.6 (13.5 – 20.4)
Period of dominant	variant		
Pre-delta	637	2251	1.0 (R)
Delta	4731	24762	0.95 (0.83 - 1.08)
Omicron	5244	73135	0.49 (0.42 – 0.56)
Vaccine type			
Janssen	1038	10028	1.30 (1.20 - 1.41)
Moderna	4241	41289	0.79(0.75 - 0.83)
Pfizer	5333	48831	1.0 (R)
Previous infection	414	3959	0.69 (0.61 – 0.78)



Comorbidities Associated with Increased Risk

BMI class			
Underweight	181	496	1.53 (1.24 – 1.87)
Normal	2095	12299	1.0 (R)
Overweight	2915	29792	0.71(0.67 - 0.76)
Obesity I	2599	28557	0.78 (0.73 - 0.84)
Obesity II	1527	15335	0.94 (0.87 - 1.02)
Severe obesity	1131	9510	1.23 (1.12 – 1.35)

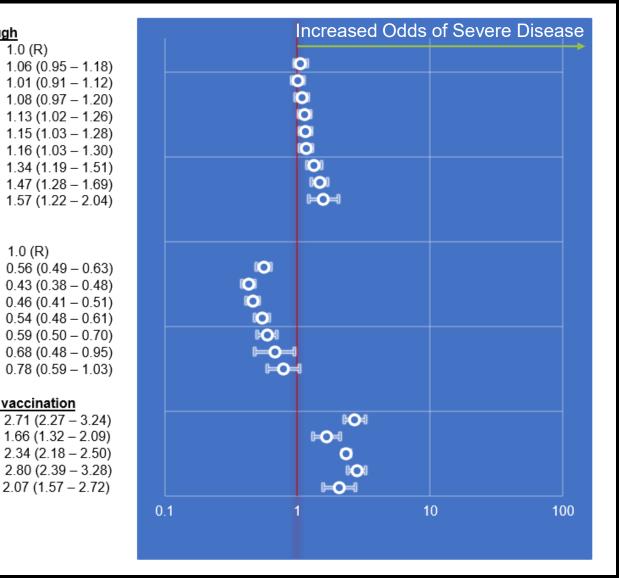
Comorbidities

Alabaimaria / damantia	440E	4045	2.04 /4.02 2.20\
Alzheimer's / dementia	1135	1915	2.01 (1.83 – 2.20)
Chronic kidney disease	2761	9071	1.59 (1.49 – 1.69)
COPD	2234	6103	1.65 (1.54 - 1.76)
Diabetes	4164	21919	1.25 (1.19 - 1.32)
Heart failure	1763	3681	1.74 (1.61 – 1.88)
HIV / AIDS	83	791	1.30 (1.01 – 1.68)
Leukemia / lymphoma	343	993	1.87 (1.61 – 2.17)
Lung cancer	251	573	1.61 (1.36 – 1.92)
Mobility impairments	302	728	1.92 (1.63 – 2.26)
Multiple sclerosis	92	362	2.86 (2.17 – 3.78)
Pressure ulcers	475	872	1.58 (1.37 – 1.81)
Schizophrenia	435	2320	1.71 (1.51 – 1.93)

Impact of Time Since Last Dose and Immunosuppression

Months since vaccination at breakthrough 1514 10983 1.0 (R) 4 - 5861 6355 1.06(0.95 - 1.18)5 - 61109 7039 1.01(0.91 - 1.12)1139 7763 1.08 (0.97 - 1.20) 7 - 81074 10665 1.13 (1.02 - 1.26) 8 - 91245 17873 1.15 (1.03 - 1.28) 9 - 101427 18570 1.16(1.03 - 1.30)1479 14252 1.34 (1.19 - 1.51) 11 – 12 666 5853 1.47(1.28 - 1.69)

Months since boosted


≥ 12

Not boosted	8556	72483	1.0 (R)
< 1	354	5041	0.56(0.49 - 0.63)
1 – 2	391	7341	0.43(0.38 - 0.48)
2 – 3	554	7996	0.46(0.41 - 0.51)
3 – 4	436	4197	0.54 (0.48 - 0.61)
4 – 5	206	1543	0.59(0.50 - 0.70)
5 – 6	50	320	0.68(0.48 - 0.95)
≥ 6	65	867	0.78(0.59 - 1.03)

795

Immune-suppressive medications after vaccination

Ch	emotherapy	310	696	2.71 (2.27 - 3.24)
Cyt	tokine-blocking	200	1401	1.66(1.32 - 2.09)
Glι	ıcocorticoids	1821	5783	2.34(2.18 - 2.50)
Lei	ukocyte-blocking	486	1438	2.80(2.39 - 3.28)
Lyr	mphocyte-depleting	179	406	2.07(1.57 - 2.72)

Vaccine and Booster Availability: Timeline

12/2020:

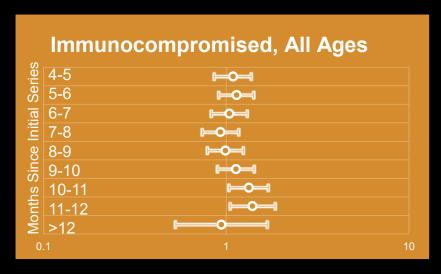
First doses available to high-risk patients

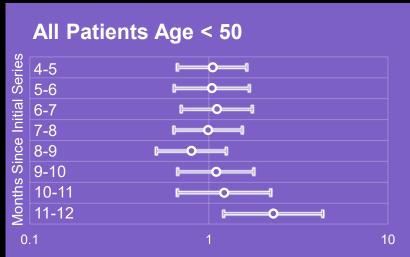
8/2021:

Boosters available to high-risk patients

11/2021:

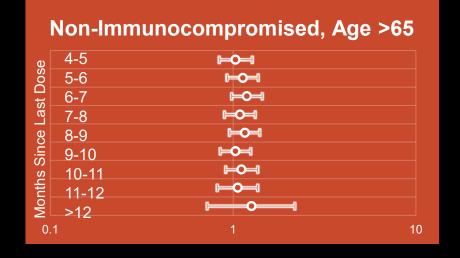
Boosters available to all adults

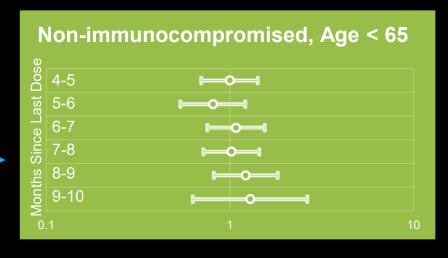



First doses available to adults

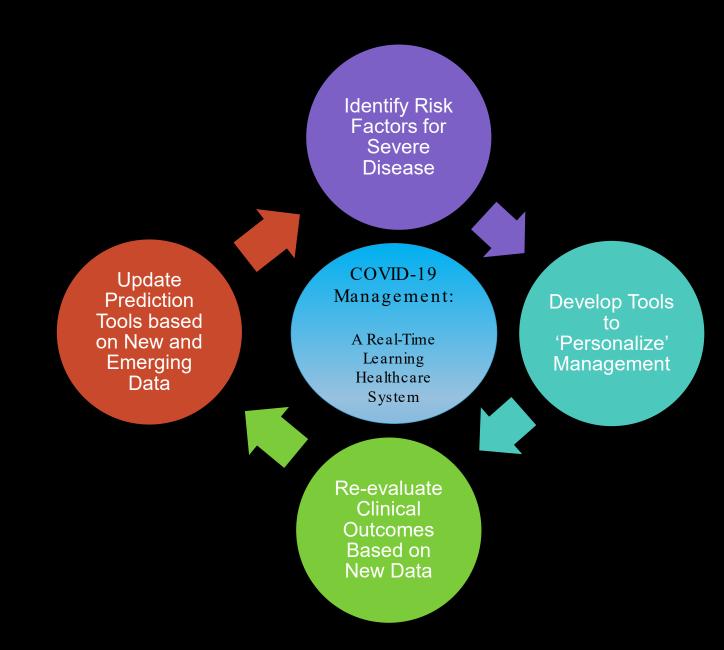
9/2021:

Boosters available to healthcare workers


Time Since Last Vaccine Dose, Stratified by Time-Since Eligibility and Boosting



Boosted and Unbooste


Jnboosted Only

Future Directions

- Use machine learning model to develop patient and providerfocused web-based application that can provide individualized risk assessment
 - Will also include impacts of interventions (E.g., medication) on likely outcomes
- Automation of pipeline to collect new data and continuously train prediction model
- Continue to develop and refine prediction models as new COVID-19 variants and data emerge

Conclusions

- Identification of those who remain at high risk of severe COVID-19 despite vaccination remains an important question for informing outreach efforts and policy responses.
 - Age remains the primary risk factor for severe disease, even in the era of wide-spread availability of vaccination.
 - Receipt of immunocompromising medications are also associated with an increased risk, of a magnitude similar to a 5-10 year increase in age.
- Appropriate adjustment for indication for early vaccination is important when evaluating waning immunity against severe disease.
- Findings will be used to create a clinical decision support tool.

Thank you!

- Paul Monach, MD, PhD
- Nathanael Fillmore, PhD
- Jennifer La, PhD
- Julie Wu, MD, PhD
- Austin Vo
- Mary Brophy, MD
- Nhan Do, MD
- Judith Strymish, MD
- Matthew Ronan, MD

- VA Boston CHOIR
- VA Boston CSP

Evidence

- Kalpana Gupta, MD, MPH
- Sharon Wright, MD, MPH
- A. Rani Elwy, PhD
- Terry Keane, PhD and VA Boston Research Leadership
- Published Study: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2797495
- Contact:
 - Westyn Branch-Elliman, MD Westyn.Branch-Elliman@va.gov